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SECTION I

INTRODUCTION

The S3-A is a spin stabilized satellite which will study particles and fields
within the inner magnetosphere. It will be placed into an equatorial orbit with a
near-earth perigee and an apogee altitude of approximately five earth radii. The
scientific objectives of the mission can best be accomplished if the spacecraft
spin axis remains in the equatorial plane. This paper describes the Optical As-
pect System designed to measure the attitude parameters necessary for the de-
termination of spin axis orientation of S3-A,

The theoretical considerations of the rotational motion of a rigid body are
presented along with the equations necessary for the solution of the aspect prob-
lem. Two detectors are used to obtain angular information from the sun and the
sunlit earth. A digital solar sensor which performs an optical analog-to-digital
conversion is used to obtain information on the elevation and azimuth angles of
the solar disk. Information is obtained from the sunlit earth by the use of a
visible horizon detector which responds to the visual discontinuity caused by the
sunlit earth against the darkness of interplanetary space. The logic system nec-
essary to collect, process and store information from these two detectors is
presented and discussed.



SECTION II

THEORETICAL CONSIDERATIONS OF ASPECT DETERMINATION

Energy and Momentum Considerations

In the solution to the problem of force free motion of a rigid body, a point
on the body can be defined in terms of the body fixed axes (x, y, z). For the pur-
pose of defining the orientation of the body fixed axes relative to a set of nonro-
tating reference axes (X, Y, Z), Euler introduced three independent angles (@, ¥, 9).
These Eulerian angles are shown in Figure 1 and are defined by three successive
rotations performed in a specific sequence. The sequence is started by: (1) ro-
tation of the initial system of axes (X, Y, Z) counterclockwise about the Z-axes
through an angle ¢, producing the intermediate set of axes (¢',n', {'). (2) Next,
this intermediate set of axes is rotated counterclockwise through an angle ¢
about the ¢'-axis producing a second intermediate set of axes (£, 1, {). The &'~
axis is also called the line of nodes. (3) Finally, the ¢, 7, {) axes are rotated
counterclockwise about the {-axis through an angle ¥, forming the (x, y, z) set of
axes. Hence, the Eulerian angles ¢, , ¢) completely describe the orientation of
the (x,y, z) system with respect to the (X, Y, Z) coordinate system. Let the
(%, v, z) coordinate system be aligned with the three principle moments of inertia
of the satellite I, , I,, and I,. Hence, the (x, y, z) system is fixed in the rotating
satellite. The instantaneous values of momentum about the x, y, and z axes are,
respectively:

px = Il C()x (1)
py = 12 COy (2)
p, ~ 13 w, (3)

where «_, @y and »_ are the instantaneous values of angular velocity about the
X, y, and z axes. The instantaneous values of both the momentum (p,, Py, P,)
and the angular velocity (wy, «,, «@,) about the x, y, and z axes can be expressed
in terms of the momentum vector (see Appendix B).

P, L sinf siny @)

p. = L sin@ cosy )



Figure 1. Euler’s Rotation Angles



pz = L cos#f (6)
w, = ¢ siny sin@ + 6 cosy @
w, = ¢ cosy sinf - 6 siny @®)
C()z - QIBCOSQ + k,[:' (9)

Substitution of Equations 4), (6), 6), (7), (8), and (9) into Equations (1), (2),
and (3) yields:

p, - Lsinysinf = I, (¢ s'ml,bsin6+6.’cos ) (10)
p, = Lcosysind = I, (<Z'5COS ysin -0 sin ¥) 1)
p, = Lcos® = I, (¢ cos 6+ ) (12)

Multiplying Equation (10) by sin ¢ and Equation (11) by cos y and adding the
results gives:

L sin@ = (11 ‘Iz)éCOSk/ISink/J + q’;'sine (I1 sin2np+12 coszk//) (13)

Multiplying Equation (10) by cos ¢ and Equation (11) by sin ¢ and subtracting
gives:

0 = ¢cosy siny siné (Il— 12) + <9'.(I1 cos?¢y+1, Siﬂz\/’) (14)

If the satellite is assumed to be dynamically balanced about the z-axis, then
I, = I,. Making this assumption and substituting into Equations (18) and (14):

L = Il<£ (from equ. 13) (15)



1,6 = 0 (from equ. 14) 16)

Since I, # 0, 6 must be zero and it follows that 6 is independent of time.

Substitution of Equations (15) and (16) into (12) yields:
p, = I, q’icos@ = I, (qi')cose +5['J) a7

Solving for tlz, the angular velocity of the satellite about the satellite z-axis:

) I.-1 q.bcosﬁ
b = &l iz (18)

Solving for qS, the angular velocity of the satellite z-axis about the momentum
vector or more precisely, the angular velocity of the line of nodes.

. I,y
¢ = (11—13)0059 19)

¢ will be referred to as the precession rate and ¢ will be termed the spin
rate. This is to be distinguished from the apparent rotation rate of the satellite
with respect to a fixed external point. This apparent rotation rate has an average
value of (¢+y). € is the precession cone half angle and ? is the rate of change
of the precession cone half angle. T I, /I3 <1, & tends towards zero and the pre-
cession coning will damp out in time. Since it is usually desirable for the satel-
lite to rotate about the z-axis, most spin stabilized satellites are balanced so
that the z-axis coincides with the largest moment of inertia. The rest of this
text will deal only with this case, resulting in the fact that & = 0. It should not
be assumed that zero precession implies that ¢ goes to zero. Equation (19) states
that when 6 = 0, ¢ = I,4/(1,-1,).

Equations Determining Satellite Aspect

Figure 2 shows the spacecraft momentum vector relative to the sun and
zenith vector on the celestial sphere. The zenith vector is defined as a vector
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Figure 2. Spacecraft Momentum Vector Relative to the Sun and the Zenith Vector



from the center of the earth through the center of mass of the spacecraft. The
center of the earth is located on the celestial sphere at (RA, + 180°) and ¢D,),
where RA, is the right ascension and D, the declination of the zenith vector. The
great circle arc from the sun to the zenith vector is eta (). By applying the
laws of sines and cosines to the spherical triangles in Figure 3, the equations
for the values of eta (1) and the angles Z1 and /3 may be written.

cosn = sinD, sinD_ + cos D, cos D cos (RAS" RAZ) 0 <7 < 180°

cosf3 ~ cos 7 cos 8
sin7msin o

cos /1 =

. in /2
sin/1 = S——————mfiflt?“

sinD_ -~ cos7sinD,
cos /3 = sinncos D,

sin (RAS - RAZ) cosD_
sin /3 =

sin 7m

Beta (8) is the angle between the sun and the momentum vector (spin axis) and
delta () is the angle between the zenith and momentum vectors. Now using the
values of /1 and /3 the right ascension (RA;) and declination (D) of the momentum
vector may be determined.

sinD; = sinD, cosd * cosD, sin dcos (£3+ /1) ~90° < D, = 90°

cos & - sinD_ sinD

cos (RAL - RAZ) - cosD, cosD

sin (41 + Z3) sin &
cosD




Therefore, to determine the right ascension and declination of the spacecraft's
momentum vector, several quantities must be known. The right ascensions and
declinations of the zenith vector (RA,,D,) and the sun (RA,, D,) are accurately
known from earth based information. Beta (8), delta () and /2 must be deter-
mined on board the spacecraft. Considering Figure 2, it is clear that

L2 = (p+y) At t 180°

where (¢ *) is the apparent rotation rate of the spacecraft and At is the time
required for the reference plane to move from the sun to the earth's center,
Therefore, it is the measurement of beta (8), delta (5), and (qb + k/l) At that the
aspect system must perform.



SECTION I

DIGITAL SOLAR SENSOR

Introduction

The digital solar sensor measures the angle of incident sunlight with respect
to the sensor z-axis and expresses this angle as a digital number. The incident,
sunlight, passing through a slit on the top of a quartz block, is screened by a
Gray-coded pattern on the bottom of the block to either illuminate or not illuminate
each of the photocell detectors. The angle of incidence determines which combi-
nation of photocells is illuminated. The solar sensor also includes a command
slit which is mounted perpendicular to the Gray-coded reticle. If the sensor is
rotated about a vertical axis along the command slit, the field of view of the two
slits will sweep out a solid angle. When the plane containing the command slit
passes across the solar disk, one or more of the photocells will be illuminated.
The time that this illumination occurs provides a measurement of the azimuth
angle of the sun. The particular combination of photocells which is illuminated
provides a digital measurement of the elevation angle of the sun in sensor
coordinates.

The digital solar sensor has features which make it more desirable than the
analog types of solar sensors. It is not subject to errors introduced by earth
shine and there are no components which can drift. The sensor requires no in-
flight calibration. The digital sensor is light in weight and requires only the
amount of power needed to drive the output load.

Measurements Using a Digital Solar Sensor

Calculation of 5—To make the measurements necessary to determine the
motion of a spinning satellite, assume that a digital solar sensor is mounted on
the satellite with the Z~-axis of the sensor parallel to the Z-axis of the rotating
satellite. Then, as the satellite rotates, the field of view of the sensor will be a
fan which sweeps across the sky, which is the celestial sphere. I a bright object
such as the solar disk should be in a portion of the celestial sphere swept out by
the sensor's field of view, a digital number, defining the angle between the sensor's
Z-axis and the sun vector would be placed in storage. This angle between the
sensor's Z-axis and the sun vector, measured by the digital sun sensor, will be
referred to as beta (B).

Determination of é andx/: —Having determined 3 we proceed to determine the
integrals of motion, ¢ and L/J When g = 0 mo precession) the apparent rotation
velocity of the satellite is b + ¢ ¥ T, and T, represent two different times at




which the solar disk appeared in the command slit of the digital solar sensor and
N, is the number of times the solar disk appeared in the command slit between
T, and T,, then the average period (T,,.) is given by:

and
WN, = (d+) (T~ T,)

Combining Equations (18) and (19) with the above expressions we have:

. 27TNI’
¢ =
(Il-Ia)cosﬁ
(Tx_To) 1+ I,
.. 27 N
vo= .
3
(Tl_To) 1+ (11—13) cosf
and since 8 = 0
. 27N
¢ = I, ~1
(Tl"To)(l"L I, \)
, WN_
¢ =
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SECTION IV

EARTH HORIZON DETECTOR

Introduction

Thus far all the measurements have been made on the sun, Since the sun is
considered a point source at infinity, there is an axis of symmetry from the
center of gravity of the satellite to the sun. Another inertial reference point is
necessary in order to eliminate the ambiguity caused by this symmetry. For
this purpose, the satellite is also equipped with an earth horizon detector sensi-
tive to visible light,

The horizon detector consists of a simple telescope and lens. The detector
element is a photodiode which is placed at the focal point of the lens. The field
of view of the horizon detector is a pencil beam approximately three degrees in
diameter. If the detector is mounted at an angle gamma (y) from the spin axis
of a rotating satellite, the field of view of the detector will transverse the surface
of a cone whose half angle is equal to gamma (y). When the field of view scans
the discontinuity caused by the sunlit earth against the dark background of inter-
planetary space, this detector produces a positive output pulse. The time at
which these pulses occur provides azimuth information on the earth's angular
distance from the sun.,

Measurements Using a Horizon Detector
The information contained in the relative position of the detector output
pulses to the command slit crossing of the sun provides a measure of the inclina-
tion of the satellite zenith vector to the spin axis, Consider the celestial sphere
shown in Figure 4 with the spacecraft located at the center of the sphere. The

arc length y, is the smaller of the two possible great circle arc lengths from the
sun to the horizon. From spherical trigonometry it follows that:

cosy, = cosfcosy * sinfBsinycosA

There are two values of x, which satisfy this equation. This ambiguity can be
removed by considering the magnitude of the angle A.

if 7-A>0, then 0=y, <7

12
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if m-A<0, then 7 <y, <27

if 7m-A=0, then x, =8+

The angle A corresponds to the relative position of the earth's horizon with re-
spect to the command slit crossing of the solar disk. Hence yx, is uniquely de-
termined and:

siny, ~ l/l - cos? X1

Now applying the cosine and sine laws of spherical trigonometry to the triangle
containing the angle x,:

cosfB = cos x, cosy

€S Xy siny, siny
) _ . sin A
siny, = sinp m-l'

Therefore x, is also uniquely determined.

Let R equal the mean radius of the earth and h be the height of the satellite
above the earth then:

sinp = R + h 05-,0‘<900

~ cosm ~ cos x, Cos P

I

€OS X3 siny, sin p

Now again there are two values of y, that satisfy this equation. Also from
Figure 5



and y, will have two possible values corresponding to the two values of x;. Also
from Figure 5

cos 8 = - cospcosy — sinpsinycosy, 0 < 8§ < 180° (20)

and delta (8) will be double valued.

The information contained in the spacing of the horizon detector output pulses
and the relative position of the earth's center from the sun, provide alternate
methods of calculating delta (8), (see Appendix C). The equations expressing
these results are presented here for convenience.

- det f,/e2+f2—d2

8 = _<_8< ° 21
cos PWD 0 180 (21)
where
d = cosp
e - cosvy
77Ata>
f = 51r1’)/cos< T
+ '/24, 2_ .2
coss = DS B 7 0< 6 < 180° 22)
st u
where
r = cosnm
s = cosp
2m Ot
p# = -~ sin Bcos T

15



The two expressions above are based on the assumption that an earth terminator
is not transversed as the earth sensor sweeps across the terrestrial disk.

The information which the earth detector must provide to solve Equations (21)
and (22) are the apparent width of the earth's disk (At,) and the location of the
earth's center from the sun (At.). From Figure 4, At can be related to the
measgured angle A by solving the spherical triangle for ..

cos p+ cosy cos

cosxs = sin 7y sin o
siny,
siny, = sinp TI55
sin y,
= -1 R TN
Xs tan (cos Xs)
Até = At x

The value of At may also be calculated from:

Ata
Atc = A+ 3

where At_ is the apparent earth width and is measured on board the spacecraft.

Now each of the solutions given in Equations (20), (21) and (22) yield two
values of the angle delta. This ambiguity is eliminated by considering the time
function of the apparent earth's width with the movement of the spacecraft in its
orbit.

16



SECTION V

ASPECT SYSTEM ELECTRONICS

Data Processing System Interface

The Data Processing System accepts the aspect data through the use of a
Interrupt Service Subroutine (I.S.S.). Data processed through an 1.S.S, is entered
into the data table area of the buffer memory. Associated with each L.S.S. are
two data tables which are used alternately for storing and reading out. These
data tables, when storing data, are filled backwards, i.e., the first data word is
stored in location N, the next in location N-1, etc. When storage location 1 becomes
filled, further interrupt requests are ignored until read out from the other data
table to telemetry is completed. When this is accomplished, the two data tables
are interchanged. Data is read out of the table that was previously used for
storage, and interrupt requests are processed and new data is placed in the table
that just completed read out.

An 1.8.8, request is initiated by the aspect system generating a data ready
signal., At the same time, two code bits are also generated by the aspect system
and sent to the D.P.S, to identify the entry point into the interrupt service sub-
routine. When service for the interrupt is completed, the D.P.S. generates a data
stored signal which is sent to the aspect system.

If a failure occurs in the buffer memory, the D.P.S. can no longer service
the aspect data through the use of the interrupt service subroutine. Therefore,
the occurrence of events which generate aspect data, such as the sun and earth
sighting, can no longer be recorded by placing the spacecraft clock time in storage
in the data tables. This data must now be read out of the aspect system directly
by the telemetry format program (P1l), which operates in synchronism with the
spacecraft clock.

This type of operation places certain restrictions on the aspect system.
First, the data is read out of the aspect system in synchronization with the space-
craft clock. This means the aspect system must store the data until the proper
read out time. Secondly, the measurement of an aspect event must now be made
with respect to some known telemetry time, i.e., measurement of a time interval
instead of the instantaneous time the event occurred.

Solar Sensor Electronics

The solar sensor output consists of ten channels of sun information. Nine of
these contain angular information, the tenth contains time occurrence or azimuth
information.

17
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Amplification of the output signals of the nine angular information channels
produces a plus voltage when the channel is excited, i.e., sunlight present on the
detector. These amplified signals are then placed in storage and, at the proper
time, shifted into the buffer memory data tables.

The amplified azimuth information, referred to as the solar command pulse,
occurs when the sun is in the field of view of the sensor command slit. The width
of this pulse is a function of the spin rate and the command slit field of view. To
eliminate these undersirable effects, a centered sun pulse is generated at the
midpoint of the solar command pulse (sun centering module).

The trailing edge of every other solar command pulse is used to generate the
aspect sync signal. The generation of this signal is necessitated by the restric-
tions on the length of the data table and the read out rate controlled by the Pi
program,

The centered sun pulse is also used to set the angular information into the
shift register and to initiate an I.S.S. request. This is accomplished by setting
the two code bits to their proper states and generating a data ready signal. The
two code bits cause the subroutine to load the spacecraft clock into the data tables
in two 12 bit words: (1) sun time fine and (2) sun time coarse. The subroutine
then shifts the contents of the aspect system storage register into the data table.
Hence, the occurrence of a centered sun pulse causes the sun time (event re-
corded by spacecraft clock) and the sun angle to be stored in three 12 bit words
in the data table.

Earth Detector Electronics

The earth detector is a light sensing device which detects the gradient be~
tween the sunlit earth and outer space. The sensing element is a photo-diode
having a response which peaks at one micron. As the satellite rotates, the de~
tector's field of view sweeps out a cone. At certain points in the orbit, the scan
of this detector successively crosses the horizons and/or terminator of the sun-
lit earth. When this occurs, the detector produces an electrical signal. This
signal is fed into a high input impedance amplifier (earth amplifier module) whose
output signal width corresponds to the apparent size of the sunlit earth.

Sun interference is removed from the earth signal by inhibiting the amplifier
output when the sun's azimuth position is within +45° of the earth detector's field
of view. This is accomplished by counting the 16~/sp signal from the Data Sync.
Clock in a four stage counter and decoding the contents to generate a pulse at the
fourteenth and second counts. These decoded pulses clear and set a control flip-
flop which generates an inhibit signal used to gate the output of the earth amplifier.

20
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The gated earth amplifier output is processed in such a manner that only the
second earth signal following the aspect sync signal is allowed to generate leading
and trailing edge pulses. The earth in (leading edge) and earth out (trailing edge)
pulses both initiate separate 1.S.S. requests. Each generate a data ready signal
and the proper code bits to cause the subroutine to place both the coarse and fine
spacecraft clock times into the data tables. Hence, an earth signal causes four
twelve bit words to be stored in the data tables, two with the earth in pulse and
two more with the earth out pulse. (See Figure 6).

Buffer Memory Failure Mode Electronics

The Aspect System provides for a buffer memory failure by supplying the
storage and interval measuring logic necessary for operation with the telemetry
format program (P1).

The aspect system is made aware of a buffer memory failure by the PMP1
logic control level ("'1" indicates P1 control of aspect data), This logic control
level nullifies the effect of the aspect sync. signal on the earth information, al-
lowing every gated earth amplifier output to generate both leading (earth in) and
trailing edge (earth out) pulses. These two earth pulses are then directed to a
control circuit which alternately allow only one of the earth pulses through each
spacecraft rotation period, i.e., in spin period N, the earth in pulse is allowed
through, in spin period N+1, the earth out pulse is allowed through, etc. The out-
put of this control circuit and the centered sun pulse are combined in an ""OR"
gate to form the event signal. Hence, in a single spin period where both the sunlit
earth and the solar disc are detected, the event signal will consist of two pulses.
One pulse will correspond to the sun crossing (centered sun pulse) and the second
pulse to one of the two earth pulses. This event signal then resets two counters
C, and C,,. The counter C, is a two stage device which inhibits its own input
after two counts, and is used to generate a transfer pulse for the shift register.
The counting source for C, is the telemetry frame signal and the transfer pulse
is generated coincident with the second frame signal after an event occurred. The
other counter C,, is a ten stage binary device which uses the spacecraft bit rate
to measure the time interval between an event and the following telemetry frame
signal. Hence, the interval between an event and a known time is measured by
counter C,, and then transferred into the shift register with the second telemetry
frame signal following the event. The occurrence of another aspect event before
the contents of C,, have been transferred to the shift register nullifies the first
event and the circuit logic proceeds to process the second event.

This type of operation necessitates the generation of inhibit signals to avoid

the problem of loading the shift register before the data already present has been
shifted to telemetry. \
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One type of inhibit is accomplished by waiting until the second telemetry
frame signal following an event before transferring data from the counter C,, to
the shift register. Since the data processing system (D.P.S.) supplies the aspect
system with an effective burst of shift pulses every frame, the register is read
out once per frame. Hence, even if the event occurred after the shift pulses in
a specific frame, the register will be cleared in the next frame allowing the aspect
event data to be transferred without loading over existing data.

A second inhibit function is needed when considering the occurrence of a
centered sun pulse. As previously mentioned, the centered sun pulse transfers
the solar elevation data into the shift register as well as initiating the measure-
ment of a time interval. Therefore, if the shift register is transferring informa-
tion to telemetry under control of P1 when a centered sun pulse occurs, the
loading of solar elevation data must be inhibited but the initiation of an event
measurement can still be allowed. This is accomplished by using the shift enable
signal to lock out the load pulse generated by the centered sun pulse.

The aspect data generated in this mode must be identified. This is accom-~
plished by adding two bits of information to the contents of the shift register. Two
flip~flops are used for these identification bits and their presence in the aspect
word defines the aspect event associated with the data, i.e., earth in, earth out,
or centered sun pulse,

Evaluation of Aspect Parameters

The quantities measured by the Optical Aspect System are:

1. Spin axis~-sun angle

2. Sun time

3. Earth "in" time

4, Earth "out" time

As previously mentioned, the three parameters necessary for attitude de-
termination are: (1) 3, the spin-axis sun angle, (2) 5, the spin axis earth angle,
(3) the fraction of a spin period between observing each.

The spin axis-sun angle (8) is measured directly by the solar sensor and its
digital representation placed in storage. To convert the digital representation of
the gray-coded sun data to a numerical value of 3, the nine bits must first be
inverted. Sun bit 9 represents the sensor reticle identification.

0 < B8 =90° sun bit 9 = "0" level

90° < B<180° sun bit 9 = "1" level
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The remaining 8 bits of sun data is converted to a decimal equivalent in the fol-
lowing manner:

A.

C.

D.

Gray-code to Binary

1) the most significant bit (8th) is the same for both codes
2) for all the following bits

a) if the preceding binary bit is a "1", the gray coded bit is inverted
to form the next binary bit.
b) if the preceding binary bit is a "'0", the gray coded bit is the
same as the next binary bit.
Binary-to-Decimal
1) conversion from binary to decimal is accomplished by weighting
each bit by the appropriate power of two and adding the results to
obtain N,
8th sun bit - 2°
7th sun bit - 2°
6th sun bit - 24
5th sun bit - 23
4th sun bit - 22
3rd sunbit - 2¢

2nd sunbit - 2°

1st sun bit - 271!

Ny = N, +0.25

(90° - Ng if sun bit 9 = "0")

(90° + Ng if sun bit 9 = "1")

When the buffer memory is used to process the aspect data, the time occur-
rence of aspect events are recorded by the spacecraft clock. Hence, sun time,
earth "in" time and earth "out' time are available from the telemetry output.
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These times are then related to G, M, T, by use of the frame count and sub-com.
time information. This is not the case when the D, P. S, is operating on the as~
pect data through the use of P1, i.e.: buffer memory failure mode. The events
are measured with respect to the end of a telemetry frame and read out in the
second telemetry frame following the event, Hence, the time interval data as-
sociated with an event that occurred during telemetry frame N will appear as
output data in telemetry frameN+2. To obtain the time that the event occurred,
the aspect word value plus one frame time must be subtracted from the time
value of the frame count in the frame in which the aspect data was read out.
Therefore, in either mode of operation, the value of the aspect parameter’'s i.e.;

sun time; earth "in" time, earth "out" time, can be obtained from the telemetry
data.

Now, examine the following definitions;

a) Spin Period = time interval between two successive sun occurrences.
b) Earth time = time interval between the occurrence of a sun pulse and
an earth "in" pulse.

c) Earth Width = time interval between an earth 'in' pulse and an earth
"out" pulse.

Hence, from the time oecurrence values of the aspect events, the three
parameters defined above can be found. Then, the fraction of a spin period be-

tween observing the two reference sources (sun and earth) can be determined
from these same three parameters.
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APPENDIX A
MATHEMATICAL REPRESENTATION OF EULERIAN ROTATIONS
Any vector (N) in the (X, Y, Z) coordinate system, written in column form,

may be transformed into the (¢, ', (') system by the application of the rotation
matrix D,

Nf ' Ny cos sin ¢ 0 Nx
N77 , = DN, = - sing cos ¢ O} | Ny
Ny» N, 0 0 1[N,
This vector, when acted upon by the rotation matrix C yields:
Ng Ny 1 0 0 cos ¢ cos ¢ O} |Ng
N77 = CD|N,| = |O cos @ sin @ |~ sin¢ cos ¢ 0] Ny
N, N, 0 - sinf cosf 0 0 1} |N

z

Finally, application of the rotation matrix B produces the N vector transformed
to the (x, y, z) coordinate system.

N, N| |ocosy siny O]J]1 0 0 || cos sind O|N,
Ny = BCDIN,| = |~ siny cosy 0}|0 cosf sind{|-sinp cos¢p 0 Ny
N, NZ 0 ] 1{{0 - sinf cosf 0 0 1 NZ

Hence, any vector in the (X, Y, Z) coordinate system can be determined in the
(X, vy, 2) coordinate system by the application of the transformation matrix
A = BCD. Performing the matrix multiplication:

cos Y cos - cosf sind siny cosy sin® *+ cos O cos ¢sinyy  sinysind
A = |-sinycos ¢~ cosf sinp cosyy - siny sin¢ + cos & cos pcosys cosy sinf
sind sing ’ -sin¥f cos ¢ cos O
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Figure 13. Rotations Defining the Eulerian Angles
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Since A is an orthogonal transformation: A"! = AT and any vector in the (x, y, 2)
coordinate system can be transformed to the X, Y, Z) system by application of

the transformation matrix A™1!

cosp cosy - sinpcos @ siny - siny cos¢p—cos dcos Ysing siné sind

sin® cosy +tcos f cos psiny - siny sing +cos fcos Ycos¢d —sinf cos¢

K =
sinOsiny sinf cosy cos 8
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APPENDIX B

MOMENTUM AND ANGULAR VELOCITIES

A, MOMENTUM

Consider the momentum vector (L) of a rotating satellite orientated along
the Z-axis of the XYZ coordinate system. Writing the momentum vector as a
column vector in the XYZ system we have

Hence, transforming the momentum vector to the xyz coordinate system, the in-
stantaneous values of momentum about the xy and z axes are obtained. Denoting
these values as p,, Pys and p, respectively we have

P, 0 L siny sinf
p,l = AL = A0l = L cosysind
P, L Lcos?&
and
« ~ Lsinysind
P, ~ L cosy sinf
p, - Lcosd

B. ANGULAR VELOCITIES

Consider w, = d¢/dt = ¢ as vector directed along the Z-axis. Writing ¢ as
a column vector
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Then expressing ¢ in the xyz coordinate system we have:

wy <£x 0 f,{;sim/JsinQ
@y = 9;3', = A¢ = AlO| = q;cosxllsinﬁ
y
wy b, o) ¢ cos 8
and
Wy = q.bsim/JsinG
wy T q;cosgbsinﬁ
y
wg = qécos@

Next consider w, = df/dt = 6 as a vector directed along the line of nodes.
Writing & as a column vector in the XYZ system

écosqb
g = ésincb
0

and transforming this vector to the xyz system

a)ax 0, 6 cosp 6 cos
wg | = |6, = M = Alfsing| = |-6siny
y

Wy 9, 0 0

wy, = écosx/J

wy = -ésinl,b

y
Wy = 0
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Finally, consider wy = df/dt = ¢ a vector perpendicular to the plane con-
taining the line of nodes and the x~axis and directed along the z-axis. Hence

w¢x = 0

@ = 0
‘/Jy

w¢, = Y

Now combining the x, y, and z components of ¢, | and g, a relationship is estab-
lished between the angular velocities Wy @y and «_ and the rate of change of the
Euler angles.

w = qb siny siné@ + 2 cosy
w, = qécosgl/ sin8 - & siny
w = ci)cos@ + \/;
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Figure 14. Components of Angular Momentum and Velocities
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APPENDIX C

CALCULATION OF DELTA (5)

Referring to Figure 15b and considering the plane containing EA and EC we
have that

0
a
=3
!
il

6-1)

where At is the time between horizon pulses and T, is the rotation period. From
Figure 14, various other relationships can be derived:

= ED + DB

(3-2)
ED = OEtan(90-8) where OE = OHcosy (3-3)
— oG .
DB = 5% (90-73) where OG = OHcosp (3-4)
EA = OHsiny (3-5)

Now considering Equation (3-1)

EB A t,
o = Ccos T
EA E
But from Equations (3-2) and (3-3)
EB = ED + DB
ED = OE tan(90-39)
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Therefore:

ED = OHcosy tan(90-38)

From Equation (3-4)

hence
- . OH cos
EB = OHcosvy tan(90"5) + m
or since
tan (90- 8) = cot$
and
cos (90-6) = sind
. OH cos p

EB = OHcosycotd + ~Sins
Finally from Equation (3~5)
EA = OHsiny

Then:

OH[cos Ycot &+

cos p:l — mh t,
sin s EAcos —F

39
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Let

Then

— cos pl | — . mAt,
OH|cos ycot 3+ 75| = OHsinvycos T,
7rAt,a
sindcosycot 3 + cosp = sindsinycos —gf—
E
7TA1:a
cos ycos & + cosp = sin 8sinycos T
E
cos p
cos Y
77Ata
sin y cos
Y TE
d+ecosé = fsind = fyl-cos?$

Now squaring both sides

or

d?2 + 2edcos® + €2 cos?8 + f2 cos?s - f2

(E2+f2> cos?3 + 2edcosd + (dz—fz)

40
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using the quadradic expression to solve for

-edt )[dz €2 - (€2+ f2) (d2 —fz)

e2+f2

cos & =

or

~de + fye?+ £2- 42

e2+ f2

cos & =

Figure 15 represents a satellite rotating with no precession. An earth
horizon sensor is mounted ¥° off the satellite z-axis so as to sweep out a cone
which cuts the earth horizons at A and C. The inclination (5) of the momentum
vector to the sub-satellite zenith vector may be expressed in terms of v, the
satellite elevation and the horizon pulse spacing.

~de t fyfe?+ f2- d?

cos & = YY) 0 <5 £ 180° 23)
where
d = cosp
€ T cosvy
mA t,
f = sinycos( TE)
and
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At
a

horizon pulse spacing

x|
i

g = rotation period.

Information determining the value of & is also contained in the relative po-
sition of the horizon pulses to the command slit crossing of the sun., On the
satellite the earth horizon sensor has a pencil field of view located ¥° from the
satellite z~-axis in the plane of the command slit. If the satellite is spinning so
that @ = 0, horizon pulses will be symmetrical about the time at which this plane
crosses the center of the earth (see Figure 15). The center of the earth is lo-
cated on the celestial sphere at (RA,+ 180°) and (-D,), where RA_ is the right
ascension and D, is the declination of the subsatellite point zenith vector,

(180° - n) is the great circle arc from the sun to the earth's center on the celestial
sphere. At_is the time midway between horizon pulses minus the time the com-
mand slit crosses the sun. The relationship between & and At  can now be writ-
ten from the spherical triangles in Figure 16.

cos (180°-7) = cosfB cos (180 -8) +sin Ssin (180~ &) cos [(q;+\/;)Atc] (24)

cosn = cosfBcosé ~ sinfBsin & cos [($+ ) Atc] (25)

Solving for 6 gives:

rsi/‘n‘s2 +,u.2 - r?

5 = £ 5 <L
cos 152 0 g (26)
where
r = = cosTm
s ¥ - cospf

4 = sin SBcos [(q.5+\/;)Atc]
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and where
cosm = sinD, sinD_ + cos D, cos D cos (RAS" RAZ) 0 =7 < 180° (27)

D, = declination of subsatellite zenith

D, = declination of sun
RA, = right ascension of subsatellite zenith
RA_ = right ascension of sun.
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APPENDIX D

SCHEMATIC DIAGRAMS
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Figure 17. Optical Aspect System: Schematic Diagram
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